Dynamics of Metal Uptake and Depuration in a Parasitized Cyprinid Fish (Rastrineobola argentea)

dc.contributor.authorOyoo-Okoth, Elijah
dc.contributor.authorAdmiraal, Wim
dc.contributor.authorOsano, Odipo
dc.contributor.authorKraak, Michiel H. S
dc.contributor.authorWere-Kogogo, Pamela J. A
dc.contributor.authorGichuki, John
dc.contributor.authorNgure, Veronica
dc.contributor.authorMakwali, Judith
dc.contributor.authorOgwai, Caleb
dc.date.accessioned2025-04-15T09:10:14Z
dc.date.available2025-04-15T09:10:14Z
dc.date.issued2012
dc.descriptionJournal Article
dc.description.abstractInfestation of fish by endoparasites may potentially influence metal uptake and elimination by the host. We quantified the metal uptake rate constant (ku) and efflux rate constants (ke) of radiolabeled Cd and Co in the cyprinid fish Rastrineobola argentea experimentally infected with the parasite Ligula intestinalis. During 24 h, the accumulation of Cd and Co increased linearly with no evident steady state in uninfected fish, infected fish and in the parasite. Following aqueous exposures, the ku for Cd in parasites was about 3× higher than that of infected fish and 6× higher than for the uninfected fish. The ku for Co was up to 15× higher in the parasites than that of infected fish and 7.5× higher than for the uninfected fish. The ke for excretion of Cd were consistently higher for the uninfected fish than for the infected fish and also higher for uninfected fish than the parasite. The ke for Co for the uninfected fish was 1.4–2.0× lower than in the infected fish, but higher for parasites compared to uninfected fish (1.3–2.3×). Pulse-chase feeding experiments with radiolabeled copepods showed that Cd assimilation efficiency from food was higher in infected fish, while Co was assimilated more effectively by uninfected fish. The observed differences in metal dynamics between infected and uninfected R. argentea in the laboratory concord with differences in metal concentrations measured in natural populations in Lake Victoria. Our findings provide evidence that L. intestinalis infection enhances Cd accumulation, but depletes the essential Co in the cyprinid fish R. argentea. We conclude that the combined stress of parasites and pollution changes metal risks to fish hosts in a metal specific manner.
dc.identifier.citationOyoo-Okoth, E., Admiraal, W., Osano, O., Kraak, M. H. S., Were-Kogogo, P. J. A., Gichuki, J., Ngure, V., Makwali, J., Ogwai, C., (2012). Dynamics of Metal Uptake and Depuration in a Parasitized Cyprinid Fish (Rastrineobola argentea). Aquatic Taxocology.
dc.identifier.urihttps://repository.daystar.ac.ke/handle/123456789/6634
dc.language.isoen
dc.publisherAquatic Taxocology
dc.relation.ispartofseries124-125
dc.subjectBiokinetic model
dc.subjectCyprinid fish
dc.subjectMetal uptake
dc.subjectMetal depuration
dc.subjectParasites
dc.titleDynamics of Metal Uptake and Depuration in a Parasitized Cyprinid Fish (Rastrineobola argentea)
dc.typeArticle

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dynamics of metal uptake and depuration in a parasitized cyprinid fish (Rastrineobola argentea).pdf
Size:
305.59 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections